H(1)=-16(x)^2+68x+4

Simple and best practice solution for H(1)=-16(x)^2+68x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(1)=-16(x)^2+68x+4 equation:



(1)=-16(H)^2+68H+4
We move all terms to the left:
(1)-(-16(H)^2+68H+4)=0
We get rid of parentheses
16H^2-68H-4+1=0
We add all the numbers together, and all the variables
16H^2-68H-3=0
a = 16; b = -68; c = -3;
Δ = b2-4ac
Δ = -682-4·16·(-3)
Δ = 4816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4816}=\sqrt{16*301}=\sqrt{16}*\sqrt{301}=4\sqrt{301}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-68)-4\sqrt{301}}{2*16}=\frac{68-4\sqrt{301}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-68)+4\sqrt{301}}{2*16}=\frac{68+4\sqrt{301}}{32} $

See similar equations:

| -4(3x-7)(4x+1)=0 | | 2v+7=3.v= | | |3-2x|=3x-2 | | 45=9(-9+7)+3a | | 7x+18x-3=5(5x+1) | | )7x-9x—6=21—5 | | -32=54-2c | | 1/2x+3=10.5 | | g/8+45=55 | | (4x-25)=(2x-1 | | -67x=6-1 | | (4x-25)°=(2x-1)° | | 9+n/10=7 | | q-84/9=1 | | 1+7m=106 | | 4x^2+19x=−12 | | 7=h/3+4 | | v/2-8=-14 | | 4​(x−9​)=8​(x+3​) | | -4x+4=-64 | | 4(5x+9)=56 | | 23x+10=x+20 | | 3/2n=27 | | |x^2-5x-4|=10 | | k-6-2=-1 | | 42=-2(9+7n)-6n | | 3.50m+25=7.50m+17 | | 4(5x+9)=56x=1 | | 4x-5-2x^2=-12x^2-10x-9 | | x4-3x²+2=0 | | 217=7(3x+7) | | -3(4x+4)=48 |

Equations solver categories